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SUMMARY 

This paper deals with finding the stresses in steadily rotating limacon-shaped thin blades of homogeneous 
isotropic elastic material. The complex potentials, involving real parameters, have been obtained in closed 
form. Giving suitable values to the parameters involved, the solutions are derived for the following four 
positions of the axis of rotation: (a) the line of symmetry of the limacon, (b) any line perpendicular to the 
line of symmetry and lying in the plane of the blade, (c) any line passing through a point on the line of 
symmetry and perpendicular to the plane of the blade, (d) normal axis passing through the centroid. The 
hoop stress and its stationary points have been calculated in all the cases. The results have also been derived 
for circular blades. The numerical results are presented in the form of tables and graphs. 

1. Introduction 

The problem of  finding the stresses in plates rotating steadily about normal axes have been 

solved by Love [1], Timoshenko and Goodier [2], Mindlin [3] and Sen [4]. Stevenson [5] used 

the complex-variable method to analyze the stresses set up by steady rotat ion in an elliptic 

plate. Solutions for plates in the form of  a cardioid and an epitrochoid have been obtained by 

Mitra [6] and Madan Mohan [7] respectively, by using Muskhelishvili's method.  

The problem of  a circular and a triangular plate rotating about a diameter and a side 

respectively have been solved by Hodge [8] by using a proper  stress function. Sen Gupta [9] 

used Sen's [10] method  to solve the problem considered by Madan Mohan [7] earlier. He 

considered a few interesting particular cases. Arkilic [11] applied the same method to solve the 

problem of  curvilinear polygonal plates rotating about an axis lying in the middle plane of  
the plates. 

The author [12] applied the complex-variable method to solve the problem considered by 

Arkilic [11]. The comparison of  author 's  solution with that obtained by Arkilic revealed a 

mistake in the lat ter  solution which had been obtained by a different method.  Incidentally it  

was proved that the method applied by Arkilic did not  give the unique solution. The au- 

thor [13] and Dhaliwal and Chowdhury [14, 15] have considered the rotat ion of  a cardioid 

about the initial line and that of  Booth's  lemniscate about the lines of  symmetry and the 

normal axis pas'sing through its centre respectively. 

All the above investigations, except [3], are l imited to rotat ion about  axes passing through 

the centroid o f  the plate. In this paper the problem of  a limacon-shaped blade rotating steadily 

about axes which in general do not  pass through the centroid of  the limacon, has been solved 
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by using the complex-variable method. The problem has been reduced to a statical one by 
treating the inertia forces as body forces. It has been noticed that the body forces will have a 
resultant due to the non-balance of inertia forces. The problem of a limacon rotating about an 
axis through its centroid perpendicular to the plane of the plate has been solved recently by 
Tilley [16], which is a particular case of the present work. The comparison of our results with 
those of Tilley reveals a mistake in his results which is pointed out in detail in Section 8. 
Results for the rotation of a circular blade about a chord or about any line normal to the plane 
of the blade and passing through any point within or on the boundary of the circle have been 
derived. It is believed that the problem of rotation of a circular disc about a chord has not been 
solved previously. The problem of an eccentrically rotating circular disc has been solved by 
Mindlin [3] by using bipolar coordinates. Comparison of our results of Section 10 with those of 
Mindlin [3] show the simplicity of our results which makes it possible to obtain the numerical 
results easily. 

2. Basic equations 

The stress components may be put in terms of two analytic functions O(z) and ~(z) of the 
complex variable z = x + iy and the body-force potential V(z,z-) as 

x"~ +yy  = 2[O'(z) + i~'(~)] + e(1 +r/) V, ( la)  

A A i~ 2 VI ( lb)  
y y  - x x  + 2/x~ = 2 [ ~ " ( z )  + ~b'(z)] - 4e(1-7/)  Oz 2 

E, ~/and ~ are Young's modulus, Poisson's ratio and density respectively, V~ is the particular 
integral of ~ V~ = V and overbars are used to denote conjugate complex quantities. The boun- 
dary condition for the unstressed boundary may be put in the form 

a VI 
f Vdz (2) ~ ( z )  + z ~ ' C e )  + ~ ( ~ )  -- - /e  - -  - e 

where 

3' = 2(1 - r/). (3) 

We introduce the mapping function, which maps the region occupied by the blade in z-plane 
onto the unit circle in the ~-plane: 

z = g(~), ~ = pe iO 

where p and 0 may be taken as polar 

(4) 

coordinates of the point ~ in the ~-plane and the 
corresponding point z = g(pe i°) of the z-plane has p and 0 as its curvilinear coordinates. The 
stress components with reference to the curvilinear coordinates may be derived from (1); the 
results are as follows: 
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A A 

pp + 00 = 2[@(~) + @(~')1 + e(1 + 7) V, (5a) 

A A A 

O0 - pp + 2ipO = 2 • (~') - 2 e ( 1 - r / )  ~ V,-]  
az 2 _J 

(5b) 

where 

o(z)=o[g(Dl-o(D, ~(z)= ¢[g(D]- ¢(D, 

¢(~)= ¢'(~)lg'(~), ' I ' ( D =  ¢' (DIg ' (D.  

The boundary condition (2) is now transformed into 

g(o) 
4(0) + ~ -~'(o) + ~ (o) = F(o) 

g'(o)  
(6) 

where o = e iO is the value of  ~ on the boundary of  the unit circle and F(o) is the value of  the 

right-hand side o f (2 )  at ~ = o. 

Part L LIMA CON-SHAPED BLADES 

3. General solution 

Let the body-force potential be 

1 
V= ~ ~2 [p(z 2 + 2 2 )  _ 2qz-z] (7) 

where ~ is the uniform angular velocity p,  q are numerical constants such that for p = q = 1 ; p 

- 1, q = 1; p = 0, q = 2; V corresponds to a rotation about the x-axis, y-axis and an axis 

passing through the origin of  coordinates and normal to the plane of  the blade, respectively. 

The limacon, shown in Fig. 1, bounded by the curve 

x = e ( n + e o s O  + m cos 20), 

y = c(sin 0 + m sin 20) (8) 

is mapped onto the interior of  the unit circle in the ~'-plane by the transformation 

1 
z=g(~)=e(n+~+m~2) ,  Iml <_ "~, J n + m l  _< 1 (9) 

where c (>  0), m and n are real constants. It may be noticed that the y-axis changes its position 
with n, it passes through A when n = 1 - m  and through B when n = - 1 - m .  
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Figure 1. Limacon-shaped blade. 

Making use of  (4) and (7) in (6), we f'md that 

1 1 
F(o)  = KT[p'{g3(o) + 3g(o )g  2 ( o )} - 3qg2(°)-g ( o )1 

1 1 
- 12Kf [p~g~(o) +2' ( ~ )  } - 2qg(o)2 (o)  ] g'(o)ao (10) 

where 

1 
K = ~'ff e~2c  3 . (11) 

Substituting the value o fg(o)  from (9) in (10) and making some simplifications, we find that  

6 
F ( o ) = K [ L l o g o +  ~, Lro r] (12) 

1"----4 

where 

L(p,q) = - 2 4  In (1 +2m 2) + m] ( p - q ) ,  

L6(p,q) = ( 7 - 4 )  m3p,  

Ls(p,q) = 3 ( 7 - 4 )  m2p, 

L4(p,q) = 3 ( 7 - 4 ) m  [ n m ( p - q )  +p] ,  

L3(p,q) = ( 7 - 4 )  [ ( P - q )  (6nm + 1) + ( 1 - 3 m 2 ) ]  + 4qm 2 , 

r2(P,q) = 3 ( 7 - 4 ) n  (1 + 2nm) ( P - q )  - 3mq [(3 , -8)  ( 2 + m  2) + 4], 

L 1 (P,q) = P [6 ( 7 - 4 )  n (n + m) - 24nm] - 3q [ ( 7 -  8) (2n 2 + 2nm + 1 + 2m 2) + 8(n 2 - m  2 )], 

Lo = 0, 
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L_  l(P,q) = 3P [(7+4) ( 2n2 +2nm+ 1 + 2 m 2 ) - 8 ( n :  -m2)] -3qn[(?+8) (n+2m)-8(n+m)] ,  

L_  2 (P,q) = 3p [?(2n 2 rn +n + 2m +rn a ) + 4m (1 +m 2)] - 3 7qn 2 m, 

L_  3(P,q) = pm [3 ?(2n + m) - 4m], 

L _ 4 ( P , q )  = 3 ?pnm 2 . (13) 

Since the axis o f  rotation does not pass through the centroid of  the blade, unless p = q there 

will be non-balance of  the inertia forces. The inertia forces treated as body forces will have a 

resultant P acting at the point x = cn. Hence the functions ¢(~) and ~k(~) should be holomorphic 

within the unit circle except at ~" = 0, which is a point of  singularity, and may be taken in the 
form: 

1 
q(~') = ¢0(~')+ ~ ( 4 - 7 ) P K  log ~', 

1 
ff(~') = ~o(~') - ~" (4 +? )PK log ~" 

where 

~o(~') = K Z ar~ r, ~0(~') = K ,~, 
r= 1 r=  1 

P(p,q) = - 2 4  [n(1 + 2m 2) + m] ( p - q )  

b r r~" , 

(14a) 

(14b) 

(14c) 

and at, b r are real constants. 
It may be noticed from (14c) that P = 0 when p = q which means that the blade is rotating 

about the x-axis and the centroid obviously lies on it. Again P = 0 when 

m 
n - (15) 

1 4 2 m  2 

For n given by (15), it can be easily verified from (8) that the centroid of  the blade will be the 

origin o f  the coordinates which shows that the axis of  rotation will pass through the centroid 

and the vanishing of  P is jultified. 

Substituting from (12) and (14) in (6), we get 

~o(O)+ g(o) o( ) + ~ ( 4 - 7 ) / o  + 4 0 (  ) = 2; LrO r. (16) 
~,(_~r ) r=--4 

Multiplying both sides o f  (16) by do/2ni(o-~) and integrating over the unit circle, we obtain 

1 
¢0(~) + ~ ( 4 - ? ) P [ m ~  a + ( 1 - 2 m 2 ) ~  2 + (n-2m+4ma)~] + mat ~2 + 

6 
L r + [ ( 1 - 2 m 2 ) a t  + 2ma2] ~ = ~ r~ • 

r =  1 
(17) 
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Comparison of like powers of ~ on the two sides of (17) gives the following values of ak: 

1 
a l (p 'q )=  2 (1-2m2) -1 [ 3 ( 7 - 4 ) ( p - q ) ( n 2 - - 6 n 2 m 2  +3nm -16nm S  +4m 2_8m  4) 

-- 2 4 ( p - q ) n m -  3(7-8)  q (1-2m 4) + 67qm 2 ], 

1 
a2(p,q) = -~ (1-2m2) -1 " [ 3 ( 7 - 4 ) ( p - q ) { n 2 m ( 3 - 2 m 2 ) _ n m 2 ( 3 _ 8 m 2  ) 

- 2m(1 --2m 2) + 24 ( p - q ) n m  2 - 3 ( 7 - 8 ) q ( 3 - 4 m  2 -2 m 4 )m  - 24qm], 

aa(p,q) = ( 7 4 )  [ 3 ( p - q ) n m ( 1 - - 2 m  2) +p (1-3m 2 )] + 4qm 2 

ar (p ,q )=Lr(p ,q ) ,  r = 4,5,6, 

a r = 0, r _> 7. (18) 

Again multiplying the conjugate complex of (16) by d~/2~ri(o-~) and integrating over the unit 
circle, we obtain 

1 

~Oo(~)- ~0(~') + mal~ "-2 + [(1-2m2)al  + 2ma21~-' + 

+ L _ I ~  +L_2  ~2 +L_a~ "3 +L_4  ~'4 . 

Substituting from (14), (18) and (13) in (19) and simplifying we obtain 

K s 

l+2m  c,V 

where 

(19) 

(20a) 

6"1 (p,q) = 3p [7 { 2n 2 - nm(1 + 2m 2) + m 2 } + 4 {nm (5 - 2m 2) + 2 + 5m 2 }] 

- 3q [7 {n 2 _ n m (1 -2m 2 )} + 4m {n (5-2m 2) + m }] - 2ha2 (p,q), 

C2(p,q) = 3 p [ 3 ( 7 + 4 ) n m { n (  l + 2m2)+ m} +4(n+ 7 m ) ( l  + 2m2)] - 

- 1 8 q n m [ ( 7 - 4 ) n m  2 + 2(n+3m)], 

C3(p,q) = 6 ( 7 - 8 ) q n 2 m  2 + 16pm(3n2m+ 3n + 5m +3m3), 

C4(p,q) = 4pm2(15n +4m), 

Cs (p,q) = 24pnm 3 . (20b) 

The complex functions ~ ' )  and ~0(~') are now completely determined by (14), (18) and (20). 
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4. Rotation about the x-axis 

It is easily seen from (7) that for this case p = q = 1. Now setting p = q = 1 in the results of  

Section 3, we find that V(z,z-), ¢(~')and ~(~) are given by 

V= 1 co2(z2 + ~ 2 _ 2 z ~ )  ' (21) 
8 

6 K s 
¢(~)= K Z Pr~ r, ¢(~)= x ptr ~ r 

r=, 1 + 2m~" r = l  
(22a) 

where 

P'r = Cr(1,1), Pr = at(l ,1)" (22b) 

Inserting the values of  V(z,z), ~(~) and ~(~') from (21) and (22) in (5a) and noting that [t3"~]~= ° 

= 0, we obtain the hoop stress 

= 
e c°2 c2 ( m2 ) 1 - 4 m  2 

16(1+4m2+4mcosO) [{7 1+7m2+4m4 1 - 2 m  2 +8m2 ~ l - 2 r n  2 } 

+ 47m(1 +2m 2) cos 0 + 27m 2 cos 20]. (23) 

It is seen from (23) that the hoop stress is symmetrical about the x-axis and that the 

stationary points o f  the hoop stress occur at 0 = 0 (z = n + m + 1), 0 = 7r(z = n + m - 1 )  and 0 = 

01,, given by 

1 
cos O m - 

4m 
[ { ( 1 - 4 m 2 )  (1 +2m 2 + 32m2 3 , - 1 ) ( 1 - 2 m 2 )  -1 }Yz - ( 1  +4m2)].  (24) 

It is further noticed that 0 = 0 m is a point of  minimum and 0 = 0, rr are the points of  maxima 
and that the greatest hoop stress occurs at 0 = 7r. 

Setting 0 = rr in (23), we find the greatest hoop stress 

J~. ~ G.)2 C 2 

[ 0 0 ] r - - - 1 -  3 2 ( 1 - 2 m )  [7(1-6m+6m2-4ma)+ l+2ml_2m 2 (7+16m2)]" (25) 

TABLE 1 

Variation of the greatest hoop stress (~ = ~-) 
3 

m 0 0.1 0.2 0.25 0.3 0.35 0.4 0.45 

[O0/et°2c2 ]~" =-1 0.083 0.095 0.157 0.234 0.384 0.697 1.461 5.077 

Journal of Engineering Math., Vol. 14 (1980) 1-16 



8 

TABLE 2 

Variation o f  the hoop stress O0/eto 2 c 2 rn = ~) 

R. S. Dhaliwal and K. L. Chowdhury 

m 0 0 o 3 0  ° 6 0  ° 9 0  ° 1 2 0  ° 1 5 0  ° 1 8 0  ° 

0 0.083 0.083 0.083 0.083 0.083 0.083 0.083 
0.1 0.089 0.089 0.088 0.089 0.090 0.093 0.095 
0.2 0.102 0.101 0.099 0.099 0.109 0.134 0.157 
0.3 0.116 0.114 0.110 0.110 0.129 0.218 0.384 
0.4 0.127 0.124 0.116 0.111 0.134 0.271 0.461 
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P m  

Figure 2. Numerical values of the greatest hoop stress (O0[eto2c2)g=_l against m for a limacon-shaped 
blade rotating about the x-axis and about a normal axis passing through the centroid. 
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J~" 2 2 Figure 3. Numerical values of the hoop stress 00/eto c against 0 (0 ° < 0 < 180 °) for m = 0.04, 0.2, 0.3, 
0.4 for a limacon-shaped blade rotating about the x-axis and about a normal axis passing through the 
centxoid. 
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1 
The variation of  the greatest hoop stress for different values o f m  < 0 . 4 5  07 = 3 ) i s  given in 

Table 1 and is illustrated graphically in Fig. 2. The variation of  the hoop stress from 0 = 0 to 0 

=Tr for m = 0, 0.1, 0.2, 0.3, 0.4, (~ =-~) is listed in Table 2 and is shown graphically in Fig. 3. 
4 

J 

5. Rotation about the y-axis 

This case corresponds to p = - 1 ,  q = 1 and from Section 3 we find that  for these values o f p  

andq:  

1 ~2(z  2 +~2 + 2zz),  V = ' ~  

4-"/ 6 
q~(~') = K  [ '---~- Q l o g ~ ' +  r= ~1 Qr~rl' 

(26) 

where 

4+3, 1 s 
ff(~') = K [ -  ---if- Q log ~" + 1 +2m"-~ r Z= , Q'r~r] (27a) 

Q = P ( - 1 , 1 ) ,  Qr = at(-1,1),  Q'r = Cr(-1,1). (27b) 

Substituting from (26) and (27) in (5a) and noting that  [ ~ ] r = o  = 0, we obtain the hoop stress 

A 

[00]r= ° = 
6602C 2 

8 ( 1 - 2 m 2 )  (1 +4m 2 +4m cos0)  
[ (7 -4 )  {n 2 ( 1 - 2 m  2 - 8 m  4 ) + n m ( 5 - 4 m  2 - 16m 4 ) 

1 
+ ~ (1 + 12m 2 - 2 6 m  4 - 8 m  6)} + 8nm(1-4m 2) + 2(1 + 6m 2 - 18m 4 - 8 m  6 ) 

+ 2 ( 1 - 4 m  4) ~ (7 -4 )  [n (1 + 2m2) + 2m] + 4m } cos 0 

+ m ( 1 - 2 m  2) {(7--4) [2n (1 +2m 2) + 3m] + 4m } cos 20 ]. (28) 

It is found that  the maximum hoop stress occurs at 0 = 0 and 0 = rr. The point of  minimum 
hoop stress varies with the values of  m and n. 

6. Rotation about a normal axis passillg through the origin 

When the blade is rotating about an axis normal to the plane of the blade and passing through 
the origin of  coordinates, the body-force potential is represented by: 

1 
V - - -  - ~o2z~ (29) 

2 
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which corresponds to p = 0, q = 2. For these values o f p  and q we find from Section 3 that: 

t48 ¢(~ ' )=K 7 R l o g ~ ' +  ~ Rr~r], 
r =  I 

~O(~') = K [ -  4+7  R log ~" + 1 a 
8 l+2m~" r--~l R'r~"] 

where 

(30a) 

R = P(0,2),  R r = at(0,2 ), R '  r = Cr(0,2 ). (30b) 

Substituting from (29) and (30) in (5a), we obtain the hoop stress 

e w  2c2 [ ( 7 - 4 )  {n2 ( l _ 2 m  2 - 8 m  4 ) + n m ( 5 - 4 m  2 - 1 6 m  4) 
[00]~.=o = 8(1+4m 2 +4mcosO)(1-2m 2) 

+ 1 + 8m 2 - 18m 4 - -  8 m  6 } + 4 { 1 + 6m 2 -- 18m a --8m 6 + 2nm (1 --4m 2 ) } + 

+ 2 {(7--4) [n (1 + 2m 2) + 3m] + 8m} x (1--4m 4) cos 0 + 

+ 2m ~(7--4) [n (1 +2m 2) + 2m] + 4m} x (1--2m 2) cos 20]. (31) 

It is noted from (31) that  the points of  maximum hoop stress are 0 = 0, 0 = 7r. 

7. Rotat ion about  the normal axis through the eentroid 

It is easily seen that the x-coordinate of  the centroid of  the limacon, given by (8), is xg where 

~ m " 1 Xg=C + l + 2 m  2 . 

The centroid of  the limacon will be the point (0,0) when n = - m ( 1  + 2 m2)  -~ . When the blade 
is rotating about  the axis normal to the plane of  the blade and passing through its centroid, the 
body-force potential is given by 

V = -  1 6o2z ~ (32) 
2 

which coincides with (7) for p --- 0, q = 2. The complex functions for this case are derived to be 

~(~) = K(S,~ + $2~ 2 + $3~ "a + $4~'4), 

1 
~k (~') = K - -  (S'1 ~ + S~ ~2 + S~ ~-3) (33a) 

1 + 2m~ 
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where 

Sl = 3 ( 1 - 4 m 4 )  -l [(4-3') (1 +2m2) -1 (1 +4m 2 -10m 4 -16m 6 -8ma)+4(1 +2m 2 +2m 4 -4m6)] ,  

$2 = 3 m ( 1 - 4 m 4 )  -1 [(4-3 ')  (1 +2m2) -1 (1 + 10m 2 - 2 m  4 - 2 4 m  6 - 8 m a ) + 4 ( 1 - 1 0 m  4 - 4 m 6 ) ] ,  

$3 = 6 ( 3 ' - 4 ) m 2 ( 1 - 2 m 2 ) ( 1  +2m2) -1 +8m 2 , 

$4 = 6 (3 ' -4 )ma(1  +2m2) -1 , 

S'1 = 12m 2 (1 +2m2)  -2 [(8-3 ' )  ( 1 - 2 m 4 ) +  8m 2 ] + 2m(1 +2m 2)-1 $2, 

S'2 = 36ma(1 +2m2)  -2 [ (4-3 ' )m 2 +4(1 +3m2)],  

S~ = 1 2 ( 7 - 8 ) m  4 (1 +2m2)  -2 . (33b) 

Tl3e hoop stress, for this case, is furnished by 

e a~2 c 2 ~ l 

[~ ]~=o  = 8 ( l + 4 m 2 + 4 m c o s O )  ( l ~ m  4) 
• [ 3 " ( l + 2 m 2 ) x ( l + 4 m 2 - 1 0 m 4 - 8 m  6) 

+ 16m4(1-4m2)}  +43 'm(1 +2m 2) cos 0 + 23'm 2 cos 20~ (34) 

In this case the points o f  maximum hoop stress are 0 = 0, zr. The greatest hoop stress occurs at 0 
= zr. The minimum hoop stress occurs at 0 = 0 m, given by 

I [ , [ l _4m2)[ l+2m2)2+64m43-1] ( l_4m4)_ l }~ /2  (1+4m2)]" (35) cos 0 m = 4--m 

Setting 0 = rr in (34) and simplifying we find the expression for the greatest hoop stress: 

= eco~c2 [3" ( l_2m+4m2_2m 4 + 1 2 m S - 1 2 m  6 +8m7)+  
[-- ] r = ~  - 1 8 ( 1 - 2 m )  ( 1 - 4 m 4  ) 

+ 16m a (1 + 2m)]. (36) 

The numerical values of  the greatest hoop stress for various values of  m _< 0.45 07 = 1  ) are 

given in Table 3 and are illustrated graphically in Fig. 2. The variation of  the hoop stress from 0 

= 0 to 0 = 7r for m = 0, 0 .1 ,0.2,  0.3, 0.4 0 7 = 3 )  is listed in Table 4 and is shown graphically in 

Fig. 3. 

TABLE 3 

Variation of  the greatest hoop stress 0~0 /eco 2 c 2 

m 0 0.1 0.2 0.25 0.3 0.35 0.4 0.45 

[O~O/ew2c~ 1~" = -I 0.166 0.175 0.220 0.278 0.396 0.657 1.326 2.836 
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TABLE 4 

Variation of  the hoop stress O0 /eto 2 c 2 

R. S. Dhaliwal and K. L. Chowdhury 

o 0 o m 30 ° 60 ° 90 ° 120 ° 150 ° 180 ° 

0 0.166 0.166 0.166 0.166 0.166 0.166 0.166 
0.1 0.172 0.171 0.169 0.167 0.168 0.173 0.175 
0.2 0.187 0.184 0.176 0.169 0.173 0.197 0.220 
0.3 0.209 0.204 0.190 0.176 0.180 0.250 0.396 
0.4 0.234 0.226 0.205 0.182 0.177 0.289 1.326 

8. Conclus ions  and discussion 

In Sections 3-7 the solution has been obtained for limacon-shaped thin elastic blades rotating 
with constant angular velocity about the line of  symmetry or about any line perpendicular to 
the line of  symmetry and lying in its plane or about a line perpendicular to its plane and passing 
through the centroid. It has been concluded that the maximum hoop stress occurs at the ends 
of the line of symmetry in all cases. When the blade is rotating about the line of symmetry or 
about the normal axis through the centroid the maximum hoop stress increases with m. The 
comparison of the results of  Section 7 with those obtained by Tilley [16] reveals a mistake in 

his results. It may be noted that the functions q~(~'), k '(~ ')of TiUey's paper correspond to ¢(~), 
~(~) of the present paper respectively. The expression for ~'(~) given by Equation 27 on 

page 260 of his paper is 

6 o . b ~  "7 
~'(~) = k~=l bk ~k + _ _  (a) 

a + t3~" ' 

the corresponding expression for ~b(~') in our paper is given by (33a). Now (a) and (33a) will be 

equal only if 

°d)k + [Jbk- 1 = 0 (k = 7, 6, 5,4). (b) 

The values of bg given by Equations 34 on pages 263, 264 of his paper do not satisfy the 
condition (b) above, which shows that the values of  b k calculated by Tilley are wrong. The 
comparison of the values of S'1, S~, S~, given by (33b) with the corresponding values of bg's 
given by Equations 34 of  Tilley's paper show the simplicity of our results which is due to the 
reasons explained below. Tilley could have arranged the mapping function, given by Equation 
(17) of his paper as 

or 

z=2o~ (--~--a0-h +~'+ ~ ~--- ~'2) 

~3-h 
z = 2 a ( S + ~ + r ~ 2 ) ,  S= 2~ ' r=- -2a  ' (c) 
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and since he has taken the centroid of  the limacon as the origin of  the coordinates, he could 
have made use of  the relation 

S(1 +2r  2) + r =  0. (d) 

By making use o f (c )  and (d) he could have expressed the values o f a  k and b k in terms o f r  only, 
since 2a which corresponds to c of  our paper is a dimensional constant and would have 

remained common.  On page 264 of  his paper, Tilley has stated that the results have been 
checked against the known results for a circular rotating disc of  radius 2a. This statement is not 
correct, since by setting/3 = h = 0 in Equations 34 of  his paper, we find that  b3 does not vanish 
which shows that ~'(~) 4= 0 and is disagreeable with the known results. 

Part 11. CIRCULAR BLADES 

We introduce the mapping function 

z=g(~)=c(n+~) ,  c > 0, 0 _< n _< 1, (37) 

which maps the region occupied by the blade in the z-plane shown in Fig. 4 onto the unit circle 
in the ~'-plane. 

9. Rotation about a chord 

When the blade is rotating steadily about the y-axis with angular velocity ~o, the body-force 
potential is the same as given by (26). Setting m = 0 in (27), we obtain 

¢(~') = g [6(4-3 ' )n  log ~ + 3 {(4-3 ')  (1 + 2n 2 ) + 4} ~ + (4-3 ' )  ~-3 ], 

~k(~) -- - 3 K [ 2 ( 4  +3,)n log g" + (8+  33'n2) ~ " + 4n~'2 ]. (38) 

Y 

X 

z - plane 

Figure 4. Circular blade. 
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It  is noticed that there will be pressure on the axis of  rotation due to non-balance of  inertia 
forces. The resultant 84n of the inertia forces will act at ~ = 0, i.e. x = cn. Substituting for ~ and 

~k from (38) in (5) we find that 

pp = 

+ 

A 

0 0 =  

+ 
A 

pO= 

1 
6Kin2 CO-2 - 1 )  (4-3") + -~ ( 1 - 0 2 ) ( 8 - 3 ' )  

2n(p -1 - p )  (8-3 ' )  cos 0 + 4 ( 1 - p  2) cos 20],  

1 
6K[n2CO-2 + 1) (4-3 ' )  - ~ ( 1 - 0 2 ) ( 8 - 3 ' )  - 3'p2 

2n{(8-33 ' )O-3 'p  I } cos 0 + 4 ( 1 - 0 2 )  cos 20], 

-12K[n3'CO -1 - p )  sin 0 + 2 ( 1 - p  2) sin 20]. (39) 

It is easily seen from (39) that p"p = p'O = 0 on the boundary i.e. at p = 1 and the hoop stress is 

given by 

e ~2 c 2 3" 
[~ ]~=o  - 8 [ ~ -- n(4--3') (n + 2 cos 0)]. (40) 

It is seen that  the maximum and minimum hoop stresses occur at 0 = 7r, 0 respectively and the 

maximum hoop stress is given by: 

A e6°2c2 3' - n ( n - 2 )  (4-3')] .  [00It=_1- 8 [ ]  (41) 

10. Rotat ion about  a normal axis 

When the blade is rotating uniformly about an axis passing through the origin (i.e. z = 0) and 
normal to its plane the body-force potential is the same as in (29). Putting m = 0 in (30), the 
complex functions are obtained to be 

~(~') = 3K[2(4 -3 ' )n  log ~" + {4 + (4-3 ' )  (1 + n2)}~'], 

~k(~') = - 6 n K [ ( 4  + 3') log ~ + 7n~']. (42) 

Expressions for the stresses for this case are found to be 

p'~ = 6K [(8-3')  (1 _p2)  + n 2 (/9-2 _ 1) (4-3 ' )  + 2n Co-' - P )  (8-3 ' )  cos 0 ], 

0"0 = 6 K [ ( 8 - 3 ' ) ( 1 - p  2 )-n2CO-2 + 1 ) (4 -3 ' )+  2702 - 2 n  {(8-33,)p + 70 -1 } cos 0 ], 

pO = - 12KnTCO-I _p )  sin 0. (43) 

It  is seen from (43) that ~ = 0"0 = 0 at the boundary and that the hoop stress is 
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A E (,.o2 c 2 

[00]~=~ - 8 [~ / -  n (4 - ) , ) ( n  + 2 cos 0)]. (44) 

The maximum and minimum hoop stresses occur at 0 = n, 0 respectively, the maximum being 

given by 

e~°2c2 [ 3 ' -  n (n - 2) (4 -3,)]. (45) 
1 - 8 

The numerical values of the hoop stress for different positions of the axis of rotation are 

contained in Table 5 and are illustrated graphically in Figs. 5, 6. 

0.50 

~ 0 . 4 0  
e 

a3o 

~ 0.20 
Z 

0.,5 012 01.4 01.6 ~8  1.0 

Figure 5. Numerical values of the maximum hoop stress (~/eto2c2)~=_l against n for a circular blade 
rotating about a normal axis passing through the origin 0. 

~ o 
t~ -0 . I  

-0.2 

-0.3 
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-0.5 

o -0.6 
-0 .7  
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0.5 
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T 0.2 .=o 
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- 0 . 9  
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Figure 6. Numerical values of the hoop stress ~/eto2c 2 against 0 (0 ° < 0 < 180 °) for n = 0, 0.2, 0.4, 0.6, 
0.8, 1.0 for a circular blade rotating about a normal axis passing through the origin O. 
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TABLE 5 

Variation o f  the hoop stress O'O/eto2 c 2 (~ = ~) 

n o 0 ° 30 ° 60 ° 90 ° 120 ° 150 ° 180 ° 

0 0.166 0.166 0.166 0.166 0.166 0.166 0.166 
0.1 0.20 0.037 0.086 0.153 0.220 0.269 0.286 
0.4 -0.153 -0.118 -0.020 0.113 0.246 0.344 0.380 
0.6 -0.353 -0.300 -0.153 0.046 0.346 0.393 0.446 
0.8 -0.580 -0.509 -0.313 -0.046 0.220 0.415 0.486 
1.0 -0.833 -0.744 -0.500 -0.166 0.166 0.400 0.500 
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